3.2.10 \(\int \frac {x^2 (a+b \text {sech}^{-1}(c x))}{d+e x^2} \, dx\) [110]

3.2.10.1 Optimal result
3.2.10.2 Mathematica [C] (verified)
3.2.10.3 Rubi [A] (verified)
3.2.10.4 Maple [C] (warning: unable to verify)
3.2.10.5 Fricas [F]
3.2.10.6 Sympy [F]
3.2.10.7 Maxima [F(-2)]
3.2.10.8 Giac [F]
3.2.10.9 Mupad [F(-1)]

3.2.10.1 Optimal result

Integrand size = 21, antiderivative size = 519 \[ \int \frac {x^2 \left (a+b \text {sech}^{-1}(c x)\right )}{d+e x^2} \, dx=\frac {x \left (a+b \text {sech}^{-1}(c x)\right )}{e}-\frac {b \arctan \left (\sqrt {-1+\frac {1}{c x}} \sqrt {1+\frac {1}{c x}}\right )}{c e}+\frac {\sqrt {-d} \left (a+b \text {sech}^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {sech}^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e^{3/2}}-\frac {\sqrt {-d} \left (a+b \text {sech}^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{\text {sech}^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e^{3/2}}+\frac {\sqrt {-d} \left (a+b \text {sech}^{-1}(c x)\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {sech}^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 e^{3/2}}-\frac {\sqrt {-d} \left (a+b \text {sech}^{-1}(c x)\right ) \log \left (1+\frac {c \sqrt {-d} e^{\text {sech}^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 e^{3/2}}-\frac {b \sqrt {-d} \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{\text {sech}^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e^{3/2}}+\frac {b \sqrt {-d} \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{\text {sech}^{-1}(c x)}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e^{3/2}}-\frac {b \sqrt {-d} \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{\text {sech}^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 e^{3/2}}+\frac {b \sqrt {-d} \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{\text {sech}^{-1}(c x)}}{\sqrt {e}+\sqrt {c^2 d+e}}\right )}{2 e^{3/2}} \]

output
x*(a+b*arcsech(c*x))/e-b*arctan((-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2))/c/e+1/2* 
(a+b*arcsech(c*x))*ln(1-c*(1/c/x+(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2))*(-d)^(1 
/2)/(e^(1/2)-(c^2*d+e)^(1/2)))*(-d)^(1/2)/e^(3/2)-1/2*(a+b*arcsech(c*x))*l 
n(1+c*(1/c/x+(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2))*(-d)^(1/2)/(e^(1/2)-(c^2*d+ 
e)^(1/2)))*(-d)^(1/2)/e^(3/2)+1/2*(a+b*arcsech(c*x))*ln(1-c*(1/c/x+(-1+1/c 
/x)^(1/2)*(1+1/c/x)^(1/2))*(-d)^(1/2)/(e^(1/2)+(c^2*d+e)^(1/2)))*(-d)^(1/2 
)/e^(3/2)-1/2*(a+b*arcsech(c*x))*ln(1+c*(1/c/x+(-1+1/c/x)^(1/2)*(1+1/c/x)^ 
(1/2))*(-d)^(1/2)/(e^(1/2)+(c^2*d+e)^(1/2)))*(-d)^(1/2)/e^(3/2)-1/2*b*poly 
log(2,-c*(1/c/x+(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2))*(-d)^(1/2)/(e^(1/2)-(c^2 
*d+e)^(1/2)))*(-d)^(1/2)/e^(3/2)+1/2*b*polylog(2,c*(1/c/x+(-1+1/c/x)^(1/2) 
*(1+1/c/x)^(1/2))*(-d)^(1/2)/(e^(1/2)-(c^2*d+e)^(1/2)))*(-d)^(1/2)/e^(3/2) 
-1/2*b*polylog(2,-c*(1/c/x+(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2))*(-d)^(1/2)/(e 
^(1/2)+(c^2*d+e)^(1/2)))*(-d)^(1/2)/e^(3/2)+1/2*b*polylog(2,c*(1/c/x+(-1+1 
/c/x)^(1/2)*(1+1/c/x)^(1/2))*(-d)^(1/2)/(e^(1/2)+(c^2*d+e)^(1/2)))*(-d)^(1 
/2)/e^(3/2)
 
3.2.10.2 Mathematica [C] (verified)

Result contains complex when optimal does not.

Time = 2.84 (sec) , antiderivative size = 921, normalized size of antiderivative = 1.77 \[ \int \frac {x^2 \left (a+b \text {sech}^{-1}(c x)\right )}{d+e x^2} \, dx=\frac {4 a c \sqrt {e} x-4 a c \sqrt {d} \arctan \left (\frac {\sqrt {e} x}{\sqrt {d}}\right )+b \left (4 \sqrt {e} \left (c x \text {sech}^{-1}(c x)-2 \arctan \left (\tanh \left (\frac {1}{2} \text {sech}^{-1}(c x)\right )\right )\right )-2 i c \sqrt {d} \left (-4 i \arcsin \left (\frac {\sqrt {1+\frac {i \sqrt {e}}{c \sqrt {d}}}}{\sqrt {2}}\right ) \text {arctanh}\left (\frac {\left (i c \sqrt {d}+\sqrt {e}\right ) \tanh \left (\frac {1}{2} \text {sech}^{-1}(c x)\right )}{\sqrt {c^2 d+e}}\right )+\text {sech}^{-1}(c x) \log \left (1+e^{-2 \text {sech}^{-1}(c x)}\right )-\text {sech}^{-1}(c x) \log \left (1+\frac {i \left (\sqrt {e}-\sqrt {c^2 d+e}\right ) e^{-\text {sech}^{-1}(c x)}}{c \sqrt {d}}\right )+2 i \arcsin \left (\frac {\sqrt {1+\frac {i \sqrt {e}}{c \sqrt {d}}}}{\sqrt {2}}\right ) \log \left (1+\frac {i \left (\sqrt {e}-\sqrt {c^2 d+e}\right ) e^{-\text {sech}^{-1}(c x)}}{c \sqrt {d}}\right )-\text {sech}^{-1}(c x) \log \left (1+\frac {i \left (\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{-\text {sech}^{-1}(c x)}}{c \sqrt {d}}\right )-2 i \arcsin \left (\frac {\sqrt {1+\frac {i \sqrt {e}}{c \sqrt {d}}}}{\sqrt {2}}\right ) \log \left (1+\frac {i \left (\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{-\text {sech}^{-1}(c x)}}{c \sqrt {d}}\right )+\operatorname {PolyLog}\left (2,\frac {i \left (-\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{-\text {sech}^{-1}(c x)}}{c \sqrt {d}}\right )+\operatorname {PolyLog}\left (2,-\frac {i \left (\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{-\text {sech}^{-1}(c x)}}{c \sqrt {d}}\right )\right )+2 i c \sqrt {d} \left (-4 i \arcsin \left (\frac {\sqrt {1-\frac {i \sqrt {e}}{c \sqrt {d}}}}{\sqrt {2}}\right ) \text {arctanh}\left (\frac {\left (-i c \sqrt {d}+\sqrt {e}\right ) \tanh \left (\frac {1}{2} \text {sech}^{-1}(c x)\right )}{\sqrt {c^2 d+e}}\right )+\text {sech}^{-1}(c x) \log \left (1+e^{-2 \text {sech}^{-1}(c x)}\right )-\text {sech}^{-1}(c x) \log \left (1+\frac {i \left (-\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{-\text {sech}^{-1}(c x)}}{c \sqrt {d}}\right )+2 i \arcsin \left (\frac {\sqrt {1-\frac {i \sqrt {e}}{c \sqrt {d}}}}{\sqrt {2}}\right ) \log \left (1+\frac {i \left (-\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{-\text {sech}^{-1}(c x)}}{c \sqrt {d}}\right )-\text {sech}^{-1}(c x) \log \left (1-\frac {i \left (\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{-\text {sech}^{-1}(c x)}}{c \sqrt {d}}\right )-2 i \arcsin \left (\frac {\sqrt {1-\frac {i \sqrt {e}}{c \sqrt {d}}}}{\sqrt {2}}\right ) \log \left (1-\frac {i \left (\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{-\text {sech}^{-1}(c x)}}{c \sqrt {d}}\right )+\operatorname {PolyLog}\left (2,-\frac {i \left (-\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{-\text {sech}^{-1}(c x)}}{c \sqrt {d}}\right )+\operatorname {PolyLog}\left (2,\frac {i \left (\sqrt {e}+\sqrt {c^2 d+e}\right ) e^{-\text {sech}^{-1}(c x)}}{c \sqrt {d}}\right )\right )\right )}{4 c e^{3/2}} \]

input
Integrate[(x^2*(a + b*ArcSech[c*x]))/(d + e*x^2),x]
 
output
(4*a*c*Sqrt[e]*x - 4*a*c*Sqrt[d]*ArcTan[(Sqrt[e]*x)/Sqrt[d]] + b*(4*Sqrt[e 
]*(c*x*ArcSech[c*x] - 2*ArcTan[Tanh[ArcSech[c*x]/2]]) - (2*I)*c*Sqrt[d]*(( 
-4*I)*ArcSin[Sqrt[1 + (I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*ArcTanh[((I*c*Sqrt 
[d] + Sqrt[e])*Tanh[ArcSech[c*x]/2])/Sqrt[c^2*d + e]] + ArcSech[c*x]*Log[1 
 + E^(-2*ArcSech[c*x])] - ArcSech[c*x]*Log[1 + (I*(Sqrt[e] - Sqrt[c^2*d + 
e]))/(c*Sqrt[d]*E^ArcSech[c*x])] + (2*I)*ArcSin[Sqrt[1 + (I*Sqrt[e])/(c*Sq 
rt[d])]/Sqrt[2]]*Log[1 + (I*(Sqrt[e] - Sqrt[c^2*d + e]))/(c*Sqrt[d]*E^ArcS 
ech[c*x])] - ArcSech[c*x]*Log[1 + (I*(Sqrt[e] + Sqrt[c^2*d + e]))/(c*Sqrt[ 
d]*E^ArcSech[c*x])] - (2*I)*ArcSin[Sqrt[1 + (I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[ 
2]]*Log[1 + (I*(Sqrt[e] + Sqrt[c^2*d + e]))/(c*Sqrt[d]*E^ArcSech[c*x])] + 
PolyLog[2, (I*(-Sqrt[e] + Sqrt[c^2*d + e]))/(c*Sqrt[d]*E^ArcSech[c*x])] + 
PolyLog[2, ((-I)*(Sqrt[e] + Sqrt[c^2*d + e]))/(c*Sqrt[d]*E^ArcSech[c*x])]) 
 + (2*I)*c*Sqrt[d]*((-4*I)*ArcSin[Sqrt[1 - (I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2 
]]*ArcTanh[(((-I)*c*Sqrt[d] + Sqrt[e])*Tanh[ArcSech[c*x]/2])/Sqrt[c^2*d + 
e]] + ArcSech[c*x]*Log[1 + E^(-2*ArcSech[c*x])] - ArcSech[c*x]*Log[1 + (I* 
(-Sqrt[e] + Sqrt[c^2*d + e]))/(c*Sqrt[d]*E^ArcSech[c*x])] + (2*I)*ArcSin[S 
qrt[1 - (I*Sqrt[e])/(c*Sqrt[d])]/Sqrt[2]]*Log[1 + (I*(-Sqrt[e] + Sqrt[c^2* 
d + e]))/(c*Sqrt[d]*E^ArcSech[c*x])] - ArcSech[c*x]*Log[1 - (I*(Sqrt[e] + 
Sqrt[c^2*d + e]))/(c*Sqrt[d]*E^ArcSech[c*x])] - (2*I)*ArcSin[Sqrt[1 - (I*S 
qrt[e])/(c*Sqrt[d])]/Sqrt[2]]*Log[1 - (I*(Sqrt[e] + Sqrt[c^2*d + e]))/(...
 
3.2.10.3 Rubi [A] (verified)

Time = 1.58 (sec) , antiderivative size = 571, normalized size of antiderivative = 1.10, number of steps used = 4, number of rules used = 3, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.143, Rules used = {6857, 6374, 2009}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {x^2 \left (a+b \text {sech}^{-1}(c x)\right )}{d+e x^2} \, dx\)

\(\Big \downarrow \) 6857

\(\displaystyle -\int \frac {x^2 \left (a+b \text {arccosh}\left (\frac {1}{c x}\right )\right )}{\frac {d}{x^2}+e}d\frac {1}{x}\)

\(\Big \downarrow \) 6374

\(\displaystyle -\int \left (\frac {x^2 \left (a+b \text {arccosh}\left (\frac {1}{c x}\right )\right )}{e}-\frac {d \left (a+b \text {arccosh}\left (\frac {1}{c x}\right )\right )}{e \left (\frac {d}{x^2}+e\right )}\right )d\frac {1}{x}\)

\(\Big \downarrow \) 2009

\(\displaystyle \frac {\sqrt {-d} \left (a+b \text {arccosh}\left (\frac {1}{c x}\right )\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {arccosh}\left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {c^2 d+e}}\right )}{2 e^{3/2}}-\frac {\sqrt {-d} \left (a+b \text {arccosh}\left (\frac {1}{c x}\right )\right ) \log \left (\frac {c \sqrt {-d} e^{\text {arccosh}\left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {c^2 d+e}}+1\right )}{2 e^{3/2}}+\frac {\sqrt {-d} \left (a+b \text {arccosh}\left (\frac {1}{c x}\right )\right ) \log \left (1-\frac {c \sqrt {-d} e^{\text {arccosh}\left (\frac {1}{c x}\right )}}{\sqrt {c^2 d+e}+\sqrt {e}}\right )}{2 e^{3/2}}-\frac {\sqrt {-d} \left (a+b \text {arccosh}\left (\frac {1}{c x}\right )\right ) \log \left (\frac {c \sqrt {-d} e^{\text {arccosh}\left (\frac {1}{c x}\right )}}{\sqrt {c^2 d+e}+\sqrt {e}}+1\right )}{2 e^{3/2}}+\frac {x \left (a+b \text {arccosh}\left (\frac {1}{c x}\right )\right )}{e}-\frac {b \sqrt {-d} \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{\text {arccosh}\left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {d c^2+e}}\right )}{2 e^{3/2}}+\frac {b \sqrt {-d} \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{\text {arccosh}\left (\frac {1}{c x}\right )}}{\sqrt {e}-\sqrt {d c^2+e}}\right )}{2 e^{3/2}}-\frac {b \sqrt {-d} \operatorname {PolyLog}\left (2,-\frac {c \sqrt {-d} e^{\text {arccosh}\left (\frac {1}{c x}\right )}}{\sqrt {e}+\sqrt {d c^2+e}}\right )}{2 e^{3/2}}+\frac {b \sqrt {-d} \operatorname {PolyLog}\left (2,\frac {c \sqrt {-d} e^{\text {arccosh}\left (\frac {1}{c x}\right )}}{\sqrt {e}+\sqrt {d c^2+e}}\right )}{2 e^{3/2}}-\frac {b \arctan \left (\sqrt {\frac {1}{c x}-1} \sqrt {\frac {1}{c x}+1}\right )}{c e}\)

input
Int[(x^2*(a + b*ArcSech[c*x]))/(d + e*x^2),x]
 
output
(x*(a + b*ArcCosh[1/(c*x)]))/e - (b*ArcTan[Sqrt[-1 + 1/(c*x)]*Sqrt[1 + 1/( 
c*x)]])/(c*e) + (Sqrt[-d]*(a + b*ArcCosh[1/(c*x)])*Log[1 - (c*Sqrt[-d]*E^A 
rcCosh[1/(c*x)])/(Sqrt[e] - Sqrt[c^2*d + e])])/(2*e^(3/2)) - (Sqrt[-d]*(a 
+ b*ArcCosh[1/(c*x)])*Log[1 + (c*Sqrt[-d]*E^ArcCosh[1/(c*x)])/(Sqrt[e] - S 
qrt[c^2*d + e])])/(2*e^(3/2)) + (Sqrt[-d]*(a + b*ArcCosh[1/(c*x)])*Log[1 - 
 (c*Sqrt[-d]*E^ArcCosh[1/(c*x)])/(Sqrt[e] + Sqrt[c^2*d + e])])/(2*e^(3/2)) 
 - (Sqrt[-d]*(a + b*ArcCosh[1/(c*x)])*Log[1 + (c*Sqrt[-d]*E^ArcCosh[1/(c*x 
)])/(Sqrt[e] + Sqrt[c^2*d + e])])/(2*e^(3/2)) - (b*Sqrt[-d]*PolyLog[2, -(( 
c*Sqrt[-d]*E^ArcCosh[1/(c*x)])/(Sqrt[e] - Sqrt[c^2*d + e]))])/(2*e^(3/2)) 
+ (b*Sqrt[-d]*PolyLog[2, (c*Sqrt[-d]*E^ArcCosh[1/(c*x)])/(Sqrt[e] - Sqrt[c 
^2*d + e])])/(2*e^(3/2)) - (b*Sqrt[-d]*PolyLog[2, -((c*Sqrt[-d]*E^ArcCosh[ 
1/(c*x)])/(Sqrt[e] + Sqrt[c^2*d + e]))])/(2*e^(3/2)) + (b*Sqrt[-d]*PolyLog 
[2, (c*Sqrt[-d]*E^ArcCosh[1/(c*x)])/(Sqrt[e] + Sqrt[c^2*d + e])])/(2*e^(3/ 
2))
 

3.2.10.3.1 Defintions of rubi rules used

rule 2009
Int[u_, x_Symbol] :> Simp[IntSum[u, x], x] /; SumQ[u]
 

rule 6374
Int[((a_.) + ArcCosh[(c_.)*(x_)]*(b_.))^(n_.)*((f_.)*(x_))^(m_.)*((d_) + (e 
_.)*(x_)^2)^(p_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*ArcCosh[c*x])^n, 
 (f*x)^m*(d + e*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f}, x] && NeQ[c^2*d 
 + e, 0] && IGtQ[n, 0] && IntegerQ[p] && IntegerQ[m]
 

rule 6857
Int[((a_.) + ArcSech[(c_.)*(x_)]*(b_.))^(n_.)*(x_)^(m_.)*((d_.) + (e_.)*(x_ 
)^2)^(p_.), x_Symbol] :> -Subst[Int[(e + d*x^2)^p*((a + b*ArcCosh[x/c])^n/x 
^(m + 2*(p + 1))), x], x, 1/x] /; FreeQ[{a, b, c, d, e, n}, x] && IGtQ[n, 0 
] && IntegersQ[m, p]
 
3.2.10.4 Maple [C] (warning: unable to verify)

Result contains higher order function than in optimal. Order 9 vs. order 4.

Time = 54.98 (sec) , antiderivative size = 411, normalized size of antiderivative = 0.79

method result size
parts \(\frac {a x}{e}-\frac {a d \arctan \left (\frac {e x}{\sqrt {d e}}\right )}{e \sqrt {d e}}+\frac {b \,\operatorname {arcsech}\left (c x \right ) x}{e}-\frac {2 b \arctan \left (\frac {1}{c x}+\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}\right )}{c e}+\frac {b c d \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (2 c^{2} d +4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\left (\textit {\_R1}^{2} c^{2} d +4 \textit {\_R1}^{2} e +c^{2} d \right ) \left (\operatorname {arcsech}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {1}{c x}-\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {1}{c x}-\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1} \left (\textit {\_R1}^{2} c^{2} d +c^{2} d +2 e \right )}\right )}{8 e^{2}}-\frac {b c d \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (2 c^{2} d +4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\left (\textit {\_R1}^{2} c^{2} d +c^{2} d +4 e \right ) \left (\operatorname {arcsech}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {1}{c x}-\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {1}{c x}-\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1} \left (\textit {\_R1}^{2} c^{2} d +c^{2} d +2 e \right )}\right )}{8 e^{2}}\) \(411\)
derivativedivides \(\frac {\frac {a \,c^{3} x}{e}-\frac {a \,c^{3} d \arctan \left (\frac {e x}{\sqrt {d e}}\right )}{e \sqrt {d e}}+b \,c^{2} \left (\frac {\operatorname {arcsech}\left (c x \right ) c x}{e}+\frac {d \,c^{2} \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (2 c^{2} d +4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\left (\textit {\_R1}^{2} c^{2} d +4 \textit {\_R1}^{2} e +c^{2} d \right ) \left (\operatorname {arcsech}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {1}{c x}-\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {1}{c x}-\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1} \left (\textit {\_R1}^{2} c^{2} d +c^{2} d +2 e \right )}\right )}{8 e^{2}}-\frac {d \,c^{2} \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (2 c^{2} d +4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\left (\textit {\_R1}^{2} c^{2} d +c^{2} d +4 e \right ) \left (\operatorname {arcsech}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {1}{c x}-\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {1}{c x}-\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1} \left (\textit {\_R1}^{2} c^{2} d +c^{2} d +2 e \right )}\right )}{8 e^{2}}-\frac {2 \arctan \left (\frac {1}{c x}+\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}\right )}{e}\right )}{c^{3}}\) \(425\)
default \(\frac {\frac {a \,c^{3} x}{e}-\frac {a \,c^{3} d \arctan \left (\frac {e x}{\sqrt {d e}}\right )}{e \sqrt {d e}}+b \,c^{2} \left (\frac {\operatorname {arcsech}\left (c x \right ) c x}{e}+\frac {d \,c^{2} \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (2 c^{2} d +4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\left (\textit {\_R1}^{2} c^{2} d +4 \textit {\_R1}^{2} e +c^{2} d \right ) \left (\operatorname {arcsech}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {1}{c x}-\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {1}{c x}-\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1} \left (\textit {\_R1}^{2} c^{2} d +c^{2} d +2 e \right )}\right )}{8 e^{2}}-\frac {d \,c^{2} \left (\munderset {\textit {\_R1} =\operatorname {RootOf}\left (c^{2} d \,\textit {\_Z}^{4}+\left (2 c^{2} d +4 e \right ) \textit {\_Z}^{2}+c^{2} d \right )}{\sum }\frac {\left (\textit {\_R1}^{2} c^{2} d +c^{2} d +4 e \right ) \left (\operatorname {arcsech}\left (c x \right ) \ln \left (\frac {\textit {\_R1} -\frac {1}{c x}-\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}}{\textit {\_R1}}\right )+\operatorname {dilog}\left (\frac {\textit {\_R1} -\frac {1}{c x}-\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}}{\textit {\_R1}}\right )\right )}{\textit {\_R1} \left (\textit {\_R1}^{2} c^{2} d +c^{2} d +2 e \right )}\right )}{8 e^{2}}-\frac {2 \arctan \left (\frac {1}{c x}+\sqrt {-1+\frac {1}{c x}}\, \sqrt {1+\frac {1}{c x}}\right )}{e}\right )}{c^{3}}\) \(425\)

input
int(x^2*(a+b*arcsech(c*x))/(e*x^2+d),x,method=_RETURNVERBOSE)
 
output
a/e*x-a*d/e/(d*e)^(1/2)*arctan(e*x/(d*e)^(1/2))+b*arcsech(c*x)/e*x-2*b/c/e 
*arctan(1/c/x+(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2))+1/8*b*c/e^2*d*sum((_R1^2*c 
^2*d+4*_R1^2*e+c^2*d)/_R1/(_R1^2*c^2*d+c^2*d+2*e)*(arcsech(c*x)*ln((_R1-1/ 
c/x-(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2))/_R1)+dilog((_R1-1/c/x-(-1+1/c/x)^(1/ 
2)*(1+1/c/x)^(1/2))/_R1)),_R1=RootOf(c^2*d*_Z^4+(2*c^2*d+4*e)*_Z^2+c^2*d)) 
-1/8*b*c/e^2*d*sum((_R1^2*c^2*d+c^2*d+4*e)/_R1/(_R1^2*c^2*d+c^2*d+2*e)*(ar 
csech(c*x)*ln((_R1-1/c/x-(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2))/_R1)+dilog((_R1 
-1/c/x-(-1+1/c/x)^(1/2)*(1+1/c/x)^(1/2))/_R1)),_R1=RootOf(c^2*d*_Z^4+(2*c^ 
2*d+4*e)*_Z^2+c^2*d))
 
3.2.10.5 Fricas [F]

\[ \int \frac {x^2 \left (a+b \text {sech}^{-1}(c x)\right )}{d+e x^2} \, dx=\int { \frac {{\left (b \operatorname {arsech}\left (c x\right ) + a\right )} x^{2}}{e x^{2} + d} \,d x } \]

input
integrate(x^2*(a+b*arcsech(c*x))/(e*x^2+d),x, algorithm="fricas")
 
output
integral((b*x^2*arcsech(c*x) + a*x^2)/(e*x^2 + d), x)
 
3.2.10.6 Sympy [F]

\[ \int \frac {x^2 \left (a+b \text {sech}^{-1}(c x)\right )}{d+e x^2} \, dx=\int \frac {x^{2} \left (a + b \operatorname {asech}{\left (c x \right )}\right )}{d + e x^{2}}\, dx \]

input
integrate(x**2*(a+b*asech(c*x))/(e*x**2+d),x)
 
output
Integral(x**2*(a + b*asech(c*x))/(d + e*x**2), x)
 
3.2.10.7 Maxima [F(-2)]

Exception generated. \[ \int \frac {x^2 \left (a+b \text {sech}^{-1}(c x)\right )}{d+e x^2} \, dx=\text {Exception raised: ValueError} \]

input
integrate(x^2*(a+b*arcsech(c*x))/(e*x^2+d),x, algorithm="maxima")
 
output
Exception raised: ValueError >> Computation failed since Maxima requested 
additional constraints; using the 'assume' command before evaluation *may* 
 help (example of legal syntax is 'assume(e>0)', see `assume?` for more de 
tails)Is e
 
3.2.10.8 Giac [F]

\[ \int \frac {x^2 \left (a+b \text {sech}^{-1}(c x)\right )}{d+e x^2} \, dx=\int { \frac {{\left (b \operatorname {arsech}\left (c x\right ) + a\right )} x^{2}}{e x^{2} + d} \,d x } \]

input
integrate(x^2*(a+b*arcsech(c*x))/(e*x^2+d),x, algorithm="giac")
 
output
integrate((b*arcsech(c*x) + a)*x^2/(e*x^2 + d), x)
 
3.2.10.9 Mupad [F(-1)]

Timed out. \[ \int \frac {x^2 \left (a+b \text {sech}^{-1}(c x)\right )}{d+e x^2} \, dx=\int \frac {x^2\,\left (a+b\,\mathrm {acosh}\left (\frac {1}{c\,x}\right )\right )}{e\,x^2+d} \,d x \]

input
int((x^2*(a + b*acosh(1/(c*x))))/(d + e*x^2),x)
 
output
int((x^2*(a + b*acosh(1/(c*x))))/(d + e*x^2), x)